Substituent effect on the photoreduction kinetics of benzophenone.
نویسندگان
چکیده
The kinetics of the photoreduction of four benzophenone derivatives by isopropyl alcohol was examined in acetonitrile, namely, tetra-meta-trifluoromethyl-, di-para-trifluoromethyl-, di-para-methoxy benzophenone, and, for comparison, the unsubstituted molecule itself. The basic spectroscopic (absorption and phosphorescence spectra) and photophysical (quantum yields and excited state energies) properties were established, and the key kinetic parameters were determined by the laser flash photolysis transient absorption technique. The rate coefficients of both the primary and secondary photoreduction reaction show remarkable dependence on ring substitution. This substantial effect is caused by the considerable change in the activation energy of the corresponding process. The experimental results as well as DFT quantum chemical calculations clearly indicate that these benzophenone derivatives all react as n-π* excited ketones, and the rate as well as the activation energy of the reduction steps change parallel with the reaction enthalpies, the determining factor being the stability of the forming aromatic ketyl radicals. The secondary photoreduction of benzophenones by the aliphatic ketyl radical formed in the primary step occurs via a hydrogen bonded complex. The binding energy of the hydrogen bonded complex between the aliphatic ketyl radical reactant and a solvent molecule is a critical parameter influencing the observable rate of the secondary photoreduction.
منابع مشابه
Covalent sidewall functionalization of single-walled carbon nanotubes: a photoreduction approach.
Covalent sidewall functionalization of single-walled carbon nanotubes (SWNTs) via photoreduction of aromatic ketones by alcohols is reported for the first time. Irradiation of benzophenone, benzhydrol and SWNTs in benzene resulted in covalent attachment of benzhydrol to the sidewalls of the SWNTs. A variety of tools were used to characterize the functionalized SWNTs. Raman scattering, UV-visibl...
متن کاملComputational study of substituent effect on the electronic properties of ferrocylidene acetophenones complexes
In this study, the substituent effect on the electronic, spectroscopic properties and thermodynamic parameters of neutral and oxidized states of ferrocylidene acetophenone complexes was investigated by adopting the hybrid meta exchange-correlation functional of M06-2X. The frontier orbitals and the highest occupied molecular orbitals–lowest unoccupied molecular orbitals gaps of the substituted ...
متن کاملTheoretical insight of substituent effect in para substituted Fe(CO)4–pyridine complexes
Abstract: Systematic studies on the substituent effect in para substituted Fe(CO)4–pyridine complexes have been studied on the basis of DFT quantum-chemical calculations. The following substituents were taken into consideration: NO2, CN, CHO, F, H, CH3, and OH. Additionally, the Fe–N and Fe–C bonds were characterized on the basis of Atoms in Molecules topological analysis of electron density. I...
متن کاملSynthesis and evaluation of benzophenone oximes derivatized with sydnone as inhibitors of secretory phospholipase A2 with anti-inflammatory activity.
A series of benzophenone oximes appended with sydnone (3a--h) bearing different substituents on aroyl moiety were synthesized to evaluate in vivo and in vitro for their inhibitory activity against purified phospholipase A2 (PLA2) enzymes from snake venom and human inflammatory pleural and ascites fluid. In vivo and in vitro inhibition studies were carried out against PLA2 with respect to the mo...
متن کاملThe Study of Substituent effect on Osmabenzene complexes
The electronic structure and properties of the osmaabenzenes and para substituted osmabenzenes have been explored using the hybrid density functional mpw1pw91 theory. Systematic studies on the substituent effect in para substituted osmabenzenes complexes have been studied. The following substituents were taken into consideration: H, F, CH3,OH, NH2,CN, NO<...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 117 40 شماره
صفحات -
تاریخ انتشار 2013